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ABSTRACT

We introduce the notions of mixed resolutions and simplicial sections, and
prove a theorem relating them. This result is used (in another paper) to
study deformation quantization in algebraic geometry.

0. Introduction

Let K be a field of characteristic 0. In this paper we present several technical
results about the geometry of K-schemes. These results were discovered in the
course of work on deformation quantization in algebraic geometry, and they play
a crucial role in [Ye3]. This role will be explained at the end of the introduction.
The idea behind the constructions in this paper can be traced back to old work
of Bott [Bo, HY].

Let m: Z — X be a morphism of K-schemes, and let U = {U,...,Um)}
be an open covering of X. A simplicial section o of w, based on the
covering U, consists of a family of morphisms o;: Af x U; — Z, where
i = (ig,...,iq) is a multi-index; Af is the g-dimensional geometric simplex;
and U; := Ugy) N -+~ NUg,y. The morphisms o; are required to be compat-
ible with 7 and to satisfy simplicial relations. See Definition 5.1 for details.
An important example of a simplicial section is mentioned at the end of the
introduction.

* This work was partially supported by the US-Israel Binational Science Founda-
tion.
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Another notion we introduce is that of mixed resolution. Here we assume
the K-scheme X is smooth and separated, and each of the open sets U in
the covering U is affine. Given a quasi-coherent Ox-module M we define its
mixed resolution Mixg;(M). This is a complex of sheaves on X, concentrated in
non-negative degrees. As the name suggests, this resolution mixes two distinct
types of resolutions: a de Rham type resolution which is related to the sheaf Px
of principal parts of X and its Grothendieck connection, and a simplicial-Cech
type resolution which is related to the covering U. The precise definition is too
complicated to state here— see Section 4.

Let CT(QCoh Ox) denote the abelian category of bounded below complexes of
quasi-coherent O x-modules. For any M € C* (QCoh Ox) the mixed resolution
Mixg; (M) is defined by totalizing the double complex P, , Mixy;(MP). The
derived category of K-modules is denoted by D(Mod K).

THEOREM 0.1: Let X be a smooth separated K-scheme, and let U =
{U),---»Uum)} be an affine open covering of X.

(1) There is a functorial quasi-isomorphism

for M € CT(QCoh Oy).
(2) Given M € CT(QCoh Ox), the canonical morphism

T'(X, Mixg, (M)) — RT(X, Mixg, (M))

in D(Mod K) is an isomorphism.
(3) The quasi-isomorphism in part (1) induces a functorial isomorphism
I'(X, Mixg; (M) 2 RI(X, M) in D(ModK).
This is repeated as Theorem 4.15. Note that part (3) is a formal consequence
of parts (1) and (2).
A useful corollary of the theorem is the following (Corollary 4.16). Suppose

M and N are two complexes in CT(QCoh Ox), and ¢: Mixy (M) — Mixg (N)
is a K-linear quasi-isomorphism. Then

I'(X, ¢): T'(X, Mixy; M)) — I'(X, Mixg (N))

is a quasi-isomorphism.

Here is the connection between simplicial sections and mixed resolutions.
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THEOREM 0.2: Let X be a smooth separated K-scheme, let m: Z — X be a
morphism of schemes, and let U be an affine open covering of X. Suppose o
is a simplicial section of m based on U. Let M1,..., M,, N be quasi-coherent
Ox-modules, and let

o [ (Px @0y M) = 7 (Px @0y N)
i=1
be a continuous O z-multilinear sheaf morphism on Z. Then there is an induced
K-multilinear sheaf morphism

o™ (¢): H Mixgr (M;) — Mixgy (N)

on X.

In the theorem, the continuity and the complete pullback 7 refer to the
dir-inv structures on these sheaves, which are explained in Section 1. A more
detailed statement is Theorem 5.2.

Let us explain, in vague terms, how Theorem 0.2, or rather Theorem 5.2, is
used in the paper [Ye3]. Let X be a smooth separated n-dimensional
K-scheme. As we know from the work of Kontsevich [Ko], there are two im-
portant sheaves of DG Lie algebras on X, namely the sheaf Tpoly, x of poly
derivations, and the sheaf D,

x of poly differential operators. Suppose U is
some affine open covering of X. The inclusions 7, y — Mixy (7, x) and
D

poly,x — Mixy (D, x) are then quasi-isomorphisms of sheaves of DG Lie
algebras (cf. Theorem 0.1). The goal is to find an Lo, quasi-isomorphism

U MiXU (,Tpoly,X) - 1\/HXU (Dpoly,X)

between these sheaves of DG Lie algebras. Having such an L., quasi-isomor-
phism pretty much implies the solution of the deformation quantization problem
for X.

Let Coor X denote the coordinate bundle of X. This is an infinite dimensional
bundle over X, endowed with an action of the group GL,(K). Let LCC X be
the quotient bundle Coor X/GL,, (K). In [Ye4] we proved that if the covering U
is fine enough (the condition is that each open set U(;) admits an étale morphism
to AR), then the projection m: LCC X — X admits a simplicial section o.

Now the universal deformation formula of Kontsevich [Ko| gives rise to a

continuous L., quasi-isomorphism

U: 7 (Px ®ox Toory,x) — ™ (Px ®ox Dpory, x)
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on LCC X. This means that there is a sequence of continuous Or,cc x-multi-

linear sheaf morphisms

Up: [T (Px @0, Tooly,x) — ™ (Px ®ox Doty x )5

r > 1, satisfying very complicated identities. Using Theorem 5.2 we obtain a
sequence of multilinear sheaf morphisms

o (U.): HT MiXU('J;oly,X) - MiXU(Dpoly,X)

on X. After twisting these morphisms suitably (this is needed due to the pres-
ence of the Grothendieck connection; cf. [Ye2]) we obtain the desired Lo, quasi-
isomorphism W.

We believe that mixed resolutions, and the results of this paper, shall have
additional applications in algebraic geometry (e.g. algebro-geometric versions
of results on index theorems in differential geometry, cf. [NT]; or a proof of
Kontsevich’s famous yet unproved claim on Hochschild cohomology of a scheme
[Ko, Claim 8.4]).

1. Review of Dir-Inv Modules

We begin the paper with a review of the concept of dir-inv structure, which was
introduced in [Ye2]. A dir-inv structure is a generalization of an adic topology.

Let C' be a commutative ring. We denote by Mod C' the category of C-
modules.

Definition 1.1:

(1) Let M € ModC. An inv module structure on M is an inverse system
{F'M};en of C-submodules of M. The pair (M, {F'M };cn) is called an
inv C-module.

(2) Let (M,{F‘M};en) and (N, {F'N};en) be two inv C-modules. A function
¢: M — N (C-linear or not) is said to be continuous if for every i € N
there exists 7 € N such that ¢(F" M) c FIN.

(3) Define InvMod C to be the category whose objects are the inv C-modules,
and whose morphisms are the continuous C-linear homomorphisms.

There is a full and faithful embedding of categories Mod C' — Inv Mod C,
M — (M,{...,0,0}).

Recall that a directed set is a partially ordered set J with the property that
for any ji,j2 € J there exists j3 € J such that ji,j2 < js.
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Definition 1.2:

(1) Let M € ModC. A dir-inv module structure on M is a direct sys-
tem {F;M};cs of C-submodules of M, indexed by a nonempty directed
set J, together with an inv module structure on each F;M, such that
for every ji < j2 the inclusion F;, M — F;,M is continuous. The pair
(M,{F;M}jcs) is called a dir-inv C-module.

(2) Let (M,{F;M})je; and (N,{FrN}rek) be two dir-inv C-modules. A
function ¢: M — N (C-linear or not) is said to be continuous if for every
j € J there exists k € K such that ¢(F;M) C FiN, and ¢: F;M — Fy N
is a continuous function between these two inv C-modules.

(3) Define DirInvMod C to be the category whose objects are the dir-inv C-
modules, and whose morphisms are the continuous C-linear homomor-
phisms.

An inv C-module M can be endowed with a dir-inv module structure
{F;M};cs, where J := {0} and FoM := M. Thus we get a full and faith-
ful embedding Inv Mod C' — Dir Inv Mod C'.

Inv modules and dir-inv modules come in a few “flavors”: trivial, discrete
and complete. A discrete inv module is one which is isomorphic, in
InvMod C, to an object of ModC' (via the canonical embedding above). A
complete inv module is an inv module (M,{F‘M};cy) such that the
canonical map M — lim. ; M/FM is bijective. A discrete (resp., complete)
dir-inv module is one which is isomorphic, in DirInv Mod C, to a dir-inv mod-
ule (M,{F;M};cr), where all the inv modules F;M are discrete (resp., com-
plete), and the canonical map lim;_, F; M — M in Mod C is bijective. A trivial
dir-inv module is one which is isomorphic to an object of Mod C. Discrete
dir-inv modules are complete, but there are also other complete modules, as the

next example shows.

Example 1.3: Assume C' is noetherian and c-adically complete for some ideal
¢. Let M be a finitely generated C-module, and define F*M := ¢'*'M. Then
{F"M };en is called the c-adic inv structure, and (M, {F*M };cn) is a complete
inv module. Next consider an arbitrary C-module M. We take {F;M};c; to
be the collection of finitely generated C-submodules of M. This dir-inv module
structure on M is called the c-adic dir-inv structure. Again (M, {F;M},c)
is a complete dir-inv C-module. Note that a finitely generated C-module M
is discrete as inv module if and only if ¢!M = 0 for ¢ > 0; and a C-module is
discrete as dir-inv module if and only if it is a direct limit of discrete finitely
generated modules.
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The category Dir Inv Mod C'is additive. Given a collection { My }rex of dir-inv
modules, the direct sum @, My has a structure of dir-inv module, making
it into the coproduct of {Mj}rex in the category DirlnvModC. Note that
if the index set K is infinite and each M} is a nonzero discrete inv module,
then @, x My is a discrete dir-inv module which is not trivial. The tensor
product M ®¢c N of two dir-inv modules is again a dir-inv module. There is
a completion functor M +— M. (Warning: if M is complete then M=M ,
but it is not known if M is complete for arbitrary M.) The completed tensor
product is MRcN = M/®?N . Completion commutes with direct sums: if
M =@, . x My then M= Prex J/W\k. See [Ye2] for full details.

A graded dir-inv module (or graded object in DirlnvMod C) is a direct
sum M = @, o, My, where each M, is a dir-inv module. A DG algebra in
DirlnvMod C' is a graded dir-inv module A = P, ., AF | together with contin-
uous C-(bi)linear functions pu: A x A — A and d: A — A, which make A into
a DG C-algebra. If A is a super-commutative associative unital DG algebra in
DirlnvMod C, and g is a DG Lie Algebra in DirInv Mod C, then A®¢g is a DG
Lie Algebra in DirInv Mod C.

Let A be a super-commutative associative unital DG algebra in Dir Inv Mod C'.
A DG A-module in DirlnvMod C' is a graded object M in Dir Inv Mod C, to-
gether with continuous C-(bi)linear functions p: A x M — M and d: M — M,
which make M into a DG A-module in the usual sense. A DG A-module Lie
algebra in Dirlnv Mod C' is a DG Lie algebra g in DirInv Mod C, together with
a continuous C-bilinear function u: A X g — g, such that such that g becomes
a DG A-module, and

[a171, a272) = (1) araz[y1, 7]

for all ay € A% and v, € g’*.

All the constructions above can be geometrized. Let (Y, O) be a commutative
ringed space over K, i.e., Y is a topological space and O is a sheaf of commutative
K-algebras on Y. We denote by Mod O the category of O-modules on Y.

Example 1.4: Geometrizing Example 1.3, let X be a noetherian formal scheme,
with defining ideal Z. Then any coherent Ox-module M is an inv Ox-module,
with system of submodules {Z**'M};cn, and M = M; of. [EGA-T]. We call
an Ox-module dir-coherent if it is the direct limit of coherent Ox-modules.
Any dir-coherent module is quasi-coherent, but it is not known if the converse
is true. At any rate, a dir-coherent Ox-module M is a dir-inv Ox-module,
where we take {F; M} c; to be the collection of coherent submodules of M.
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Any dir-coherent Ox-module is then a complete dir-inv module. This dir-inv
module structure on M is called the Z-adic dir-inv structure. Note that a
coherent Ox-module M is discrete as inv module if and only if Z2M = 0 for
i > 0; and a dir-coherent Ox-module is discrete as dir-inv module if and only
if it is a direct limit of discrete coherent modules.

If f: (Y, 0') — (Y, O) is a morphism of ringed spaces and M € Dir Inv Mod O,
then there is an obvious structure of dir-inv @’ -module on f* M, and we define
f*M = m If M is a graded object in Dirlnv Mod O, then the inverse
images f*M and f*M are graded objects in DirlnvMod @’. If G is an algebra
(resp., a DG algebra) in Dirlnv Mod O, then f*G and f*G are algebras (resp.,
DG algebras) in Dirlnv Mod O’. Given N € DirlnvMod O’ there is an obvious
dir-inv O-module structure on f,N.

Example 1.5: Let (Y,0) be a ringed space and V' C Y an open set. For a
dir-inv O-module M there is an obvious way to make I'(V, M) into a dir-inv
I'(V,O0)-module. If M is a complete inv O-module then T'(V, M) is a com-
plete inv I'(V, O)-module. If V is quasi-compact and M is a complete dir-inv
O-module, then I'(V, M) is a complete dir-inv T'(V, O)-module.

2. Complete Thom-Sullivan Cochains

From here on K is a field of characteristic 0. Let us begin with some abstract
notions about cosimplicial modules and their normalizations, following [HS]
and [HY]. We use the notation Mod K and DGModK for the categories of K-
modules and DG (differential graded) K-modules respectively.

Let A denote the category with objects the ordered sets [g] :== {0,1,...,q},
g € N. The morphisms [p] — [q] are the order preserving functions, and we
write Af := Homa([p],[g]). The i-th co-face map 9": [p] — [p+ 1] is the
injective function that does not take the value ¢; and the i-th co-degeneracy
map s': [p] — [p — 1] is the surjective function that takes the value i twice. All
morphisms in A are compositions of various §¢ and s'.

An element of AY may be thought of as a sequence @ = (io, . .., ip) of integers

with 0 <ip <--- <14, <gq. Given i € AZL, jeA? and a € Ag, we sometimes
q

write a. (i) :=do0a € A" and a*(j) :=aoj € Al

Let C be some category. A cosimplicial object in C is a functor C: A — C.
We shall usually refer to the cosimplicial object as C' = {C?},en, and for any
a € AJ the corresponding morphism in C will be denoted by a*: C? — C4. A
simplicial object in C is a functor C: A°®? — C. The notation for a simplicial

object will be C' = {C}}pen and a: Cy — C)p.
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Suppose M = { M7} ,en is a cosimplicial K-module. The standard normal-
ization of M is the DG module NM defined as follows:

qg—1
NIM = ﬂ Ker(s’: M9 — M),
i=0
The differential is @ := Y% (~1)'d": N9M — N¢T'M. We get a functor

N: A Mod K — DGMod K.
For any ¢ let Al be the geometric ¢-dimensional simplex

A](I]( = Spec K[to,...,tq]/(t()ﬁ*"'%*tq*1).

The i-th vertex of A} is the K-rational point z such that ¢;(z) = 1 and
tj(x) = 0 for all j # i. We identify the vertices of Af with the ordered set
[q) ={0,1,...,q}. For any a: [p] — [q] in A there is a unique linear morphism
a: Al — Al extending it, and in this way {A} },en is a cosimplicial scheme.

For a K-scheme X we write QP(X) := I'(X, QQ/K) Taking X := A} we have
a super-commutative associative unital DG K-algebra Q(Af) = @,y O (A%),
that is generated as K-algebra by the elements %o, ..., %, dto,...,dt;. The col-
lection {Q2(Af)}qen is a simplicial DG algebra, namely a functor from A°P to
the category of DG K-algebras.

In [HY], we made use of the Thom-Sullivan normalization NM of a cosimpli-
cial K-module M. For some applications (specifically, [Ye3]) a complete version
of this construction is needed. Recall that for M, N € Dirlnv ModK we can
define the complete tensor product N&M. The K-modules Q4(AL) are always
considered as discrete inv modules, so Q(AL ) is a discrete dir-inv DG K-algebra.

Definition 2.1: Suppose M = {M9}4en is a cosimplicial dir-inv K-module,
namely each M? € Dirlnv ModK, and the morphisms o*: MP — M9 for
o€ Ag, are continuous K-linear homomorphisms. Let

(2.2) NM ﬁ(m(%)@Ml)
=0

be the submodule consisting of all sequences
(ug,u1,...), withwu; € Qq(AfK)@Ml,
such that

(2:3) (1®a")(w) = (ax @ 1)(w) € Q(AF)DM',
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forallk,l € Nandalla € AL. Define a coboundary operator 9: N¢M — N9+ )/
using the exterior derivative d: Q(AkL) — Q¢F1(AL). The resulting DG

K-module (NM,d) is called the complete Thom-Sullivan normalization
of M.

The K-module NM = @ _yNIM is viewed as an abstract module. We

obtain a functor

q€eN

N: A DirInv Mod K — DGMod K.

Remark 2.4: TIn case each M' is a discrete dir-inv module one has
QabyeMm! =qiAk) o M,

and therefore NM = NM.

The standard normalization NM also makes sense here, via the forgetful
functor A DirlnvMod K — A ModK. The two normalizations N and N are
related as follows. Let [,;: Q(A]ZK) — K be the K-linear map of degree
—[ defined by integration on the compact real [-dimensional simplex, namely
fAl dt; A---Adt; = ll, etc. Suppose each dir-inv module M! is complete, so that
using [Ye2, Proposition 1.5] we get a functorial K-linear homomorphism

/ Q(AL)OM! — KoM ~ M.
Al

PROPOSITION 2.5: Suppose M = {M}4en Is a cosimplicial dir-inv K-module,
with all dir-inv modules M9 complete. Then the homomorphisms f A induce a
quasi-isomorphism
/ . NM — NM
A

in DGMod K.

Proof:  This is a complete version of [HY, Theorem 1.12]. Let Al be the
simplicial set A' := Homa (—, [I]); so its set of p-simplices is AL. Define C; to
be the algebra of normalized cochains on Al namely

C = NHOmSets(Ala K) = HomSets(ALnda K).

Here Ab" is the (finite) set of nondegenerate simplices, i.e., those sequences
© = (o, ..., 1p) satisfying 0 <49 < --- <14, <I. As explained in [HY, Appendix
A}, we have simplicial DG algebras C' = {C;}ien and Q(Ag) = {Q(AL) Vien,
and a homomorphism of simplicial DG modules p: Q(Ag) — C.
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It turns out (due to Bousfield-Gugenheim) that p is a homotopy equivalence
in A°? DGModK, i.e., there are simplicial homomorphisms ¢: C — Q(Ag),
h: C — C and h': Q(Ag) — Q(Ag) such that 1 —po¢p = hod+doh and
1—¢gop=hod+doh

Now, for M = {M?} € ADirlnvModK and N = {N,} € A°’ ModK, let
N&. M be the (E)mplete version of [HY, formula (A.1)], so that, in particular,
Q(Ag)®_M = NM and C&. M = NM. Moreover,

PR 1y :/ : NM — NM.
A

It follows that f A is a homotopy equivalence in DGMod K. |

Suppose A = {A%}4en is a cosimplicial DG algebra in Dirlnv ModK (not
necessarily associative or commutative). This is a pretty complicated object:
for every q we have a DG algebra A7 = ,, A%% in Dirlnv Mod K. For every
a € A] there is a continuous DG algebra homomorphism a*: AP — A9, and
the o* have to satisfy the simplicial relatlons

Both NA and NA are DG algebras. For NA the DG algebra structure comes
from that of the DG algebras Q(AL)®A!, via the embeddings (2.2). In case
each A! is an associative super-commutative unital DG K-algebra, then so is NA.
Likewise for DG Lie algebras. (The algebra NA, with its Alexander—Whitney
product, is very noncommutative.) R

Assume that each A%’ is complete, so that the integral fA: NA — NA is
defined. This is not a DG algebra homomorphism. However:

PROPOSITION 2.6: Suppose A = {A%}qen is a cosimplicial DG algebra in
DirlnvMod K, with all A? complete. Then the homomorphisms fAl induce
an isomorphism of graded algebras

H(/ ):HﬁAiHNA.
A

Proof: This is a complete variant of [HY, Theorem 1.13]. The proof is iden-
tical, after replacing “®” with “®” where needed; cf., proof of the previous
proposition. [ |

Remark 2.7: If A is associative then presumably [ A extends to an A quasi-

isomorphism NA — NA.
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3. Commutative Cech Resolutions

In this section K is a field of characteristic 0 and X is a noetherian topological
space. We denote by Kx the constant sheaf K on X. We will be interested
in the category DirInv Mod K x, whose objects are sheaves of K-modules on X
with dir-inv structures. Note that any open set V C X is quasi-compact.

Let X = U, Uy be an open covering, which we denote by U. For any
i = (ig,...,1q) € Ay define U; := Uy N--- N Uy, and let g;: U; — X be
the inclusion. Given a dir-inv K x-module M and natural number ¢ we define

1T giegi*M

IEAT

a sheaf

This is a finite product. For an open set V' C X we then have
rv,ciUu, M) =[] T(vVnU;,M).
€AY

For any i the K-module T'(V N U;, M) has a dir-inv structure. Hence,
I(V,C1(U, M)) is a dir-inv K-module. If M happens to be a complete dir-inv
K x-module then I'(V,C%(U, M)) is a complete dir-inv K-module, since each
V N U; is quasi-compact.

Keeping V fixed we get a cosimplicial dir-inv K-module {I'(V, C4(U, M)) } 4en-
/A&pplying the functors N7 and N7 we obtain K-modules N9T'(V, C(U, M)) and
NT(V,C(U, M)). As V varies these become presheaves of K-modules, and are
denoted by NIC(U, M) and NIC(U, M).

Recall that a simplex 4 = (i, ..., {q) is nondegenerate if iy < --- < i4. Let

A;”’nd be the set of non-degenerate simplices inside AJ".
LEMMA 3.1: For every q the presheaves

NIC(U, M): V — NIT(V,C(U, M))
and N N

NIC(U, M): V — NIT(V,C(U, M))
are sheaves. There is a functorial isomorphism of sheaves
(3.2) NICU M) = ] ging;"

icAp ™

and functorial embeddings of sheaves

(3.3) N, M) < [ [ gi-07 (@2 (AL)EM)

lENicA
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and

(3.4) M — N°C(U, M).
Proof:  Since {C%(U, M)}4en is a cosimplicial sheaf we get the isomorphism
(3.2).

As for N?C(U, M), consider the sheaf Q4(AL)®M on X. Take any open set
VcXandie A;n. Since V N U; is quasi-compact we have

QUALST(V NU;, M) = T(V N U;, QY AL)RM)
=(V, gixg; | (Q1(AK)EM)).

By Definition 2.1 there is an exact sequence of presheaves on X:

0 — N1, M) — [T [ gisi((AL)EM)

leNie A

te0 o0t T[] [ goes (@ (A)EM).

k€N aeAl i€AT

Since the prgsheaves in the middle and on the right are actually sheaves, it
follows that N?C(U, M) is also a sheaf.

Finally the embedding (3.4) comes from the embeddings M — Q°(AL)SM,
w—1Qw. |

Thus we have complexes of sheaves NC(U, M) and NC(U,M). There are

functorial homomorphisms M — NC(U, M) and M — NC(U, M). Note that
the complex I'(X, NC(U, M)) is nothing but the usual global Cech complex of
M, for the covering U.

Definition 3.5: The complex NC(U, M) is called the commutative Cech
resolution of M.

The reason for the name is that NC(U, Ox) is a sheaf of super-commutative
DG algebras, as can be seen from the next lemma.

LEMMA 3.6: Suppose Mji,...,M, and N are dir-inv Kx-modules, and
q1,---,q € N. Let q := q1 + --- 4+ q». Suppose that for every | € N and
1 € A" we are given K-multilinear sheaf maps

Oar oo’ (A (AR)D (M) x -+ x (U (AR)B(M:u,))
— QU(AR)EWu,)
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that are continuous (for the dir-inv module structures), and are compatible with
the simplicial structure as in Definition 2.1. Then there are unique K-multilinear
sheaf maps

Pgr gt NUC(U, M) x - x N C(U, M) — NIC(U, N),
that commute with the embeddings(3.3).

Proof: Direct verification. [ |

LEMMA 3.7: Let My,..., M., N be dir-inv K x-modules, and ¢: [[M; — N
a continuous K-multilinear sheaf homomorphism. Then there is an induced
homomorphism of complexes of sheaves

¢: NC(U, M) ®--- @ NC(U, M,) — NC(U,N).
Proof: Use Lemma 3.6. |
In particular, if M is a dir-inv Ox-module, then NC(U, M) is a DG NC(U, Ox)-

module.
It M= GBP MP is a graded dir-inv K x-module, we define

NC(U, M) = I NIC(U, MP)

and

NCW, M) = P NCW, M.

Due to Lemma 3.7, if M is a complex in Dir Inv Mod K x, then NC(U7 M) is also
a complex (in ModK x ), and there is a functorial homomorphism of complexes

M — NC(U, M).

THEOREM 3.8: Let X be a noetherian topological space, with open covering
U = {Uu}ity- Let M be a bounded below complex in DirlnvModKx, and
assume each MP is a complete dir-inv K x-module. Then:

(1) For any open set V C X the homomorphism

r(v, /A ); T(V,NC(U, M)) — T(V,NC(U, M),

is a quasi-isomorphism of complexes of K-modules.
(2) There are functorial quasi-isomorphism of complexes of K x-modules

M — NCU, M) 12, Now, m).
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Proof: (1) Lemma 3.1 and Proposition 2.5 imply that for any p the homomor-
phism of complexes

r(v, A ) IV, NO(U, M) — T(V,NC(U, MP)),

is a quasi-isomorphism. Now use the standard filtration argument (the com-
plexes in question are all bounded below).
(2) From (1) we deduce that

(3.9) r(v,/ ):r(v,ﬁC(U,M)) — T(V,NC(U, M))
A
is a quasi-isomorphism. Hence,
/ . NC(U, M) — NC(U, M)
A

is a quasi-isomorphism of complexes of sheaves.
It is a known fact that M? — NC(U, MP) is a quasi-isomorphism of sheaves
(see, [Ha] Lemma 4.2). Again, this implies that M — NC(U, M) is a quasi-

isomorphism. And, therefore, the homomorphism M — NC(U,M) coming
from (3.4) is also a quasi-isomorphism. |

Now, let us look at a separated noetherian formal scheme X. Let Z be some
defining ideal of X, and let X be the scheme with structure sheaf Ox := Ox/Z.
So X and X have the same underlying topological space. Recall that a dir-
coherent Ox-module is a quasi-coherent Ox-module which is the union of its
coherent submodules.

COROLLARY 3.10: Let X be a noetherian separated formal scheme over K, with
defining ideal Z and underlying topological space X. Let U = {U(;}i~, be an
affine open covering of X. Let M be a bounded below complex of sheaves
of K-modules on X. Assume each MP is a dir-coherent Ox-module, and the
coboundary operators MP — MP+! are continuous for the I-adic dir-inv struc-
tures (but not necessarily Ox-linear). Then:

(1) The canonical morphism

(X, NC(U, M)) — RT(X, NC(U, M))

in D(ModK) is an isomorphism.
(2) There is a functorial isomorphism

L(X,NC(U, M)) = RI(X, M)
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in D(Mod K).
Proof: (1) Consider the commutative diagram

= F(vaA)
I'(X,NC(U,M)) — = [(X,NC(U, M))

L i e

RI'(X,NC(U, M)) ——— RI'(X,NC(U, M))

in D(ModK), in which the vertical arrows are the canonical morphisms. By
part (1) of Theorem 3.8 (with V' = X) the top arrow is a quasi-isomorphism.
And by part (2) the bottom arrow is an isomorphism. Hence it is enough to
prove that the right vertical arrow is an isomorphism.

Using a filtration argument we may assume that M is a single dir-coherent
Ox-module. Now I'(X,NC(U, M)) is the usual Cech resolution of the sheaf M
with respect to the covering U (cf., (3.2)). So it suffices to prove that for all ¢
and 1 € A;”’nd the sheaves gi*gi_l/\/l are I'(X, —)-acyclic.

First, let us assume M is a coherent Ox-module. Let U; be the open formal
subscheme of X supported on U;. Then g, ! M is a coherent Og,-module, and
both g;: 4; — X and {; — SpecK are affine morphisms. By [EGA-I, Theorem
10.10.2] it follows that gi*g;IM = Rgi*g;IM, and also

T(U;, g; 'M) = RI (U, g; ' M) 2 RT(X, Rging; 'M) = RT(X, ging; ' M).

We conclude that H7 (X, g;.g; 'M) = 0 for all j > 0.

In the general case when M is a direct limit of coherent Ox-modules we still
get H (X, ging; " M) = 0 for all j > 0.
(2) By part (2) of Theorem 3.8 we get a functorial isomorphism RT'(X, M) 2
RI(X, KTC(U,M)). Now use part (1) above. |

4. Mixed Resolutions

In this section K is s field of characteristic 0 and X is a finite type K-scheme.

Let us begin be recalling the definition of the sheaf of principal parts
Px from [EGA IV]. Let A: X — X2 = X xg X be the diagonal embedding.
By completing X? along A(X) we obtain a noetherian formal scheme X, and
Px := Ox. The two projections p;: X? — X give rise to two ring homomor-
phisms pj: Ox — Px. We view Px as a left (resp., right) Ox-module via p}
(vesp., p3).
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Recall that a connection V on an Ox-module M is a K-linear sheaf ho-
momorphism V: M — Qf ®o, M satisfying the Leibniz rule V(fm) =
d(f) @ m+ fV(m) for local sections f € Ox and m € M.

Definition 4.1:  Consider the de Rham differential dx2/x: Ox2 — Q%@/X rel-
ative to the morphism ps: X2 — X. Since Q%@/X >~ piQk =p; Q% ®p-ioy
Ox:z, we obtain a K-linear homomorphism dxz2,x: Oxz — p; QY. Passing to
the completion along the diagonal A(X) we get a connection of Ox-modules

(4.2) Vp: Px — Q% ®ox Px,

called the Grothendieck connection.

Note that the connection Vp is py 'Ox-linear. It will be useful to describe
Vp on the level of rings. Let U = Spec C' C X be an affine open set. Then

D(U, Q% ®o, Px) = Qb 0c (CoC) =L e C,

is the I-adic completion, where I := Ker(C' ® C — C). And

Vp:CC—0LeC

is the completion of d® 1: C @ C — Qf ® C.
The connection Vp of (4.2) induces differential operators of left O x-modules

Vp: O ®o, Px — Q¢! @0, Px
for all ¢ > 0, by the rule
(4.3) Vp(a®b) =d(a) @b+ (—1)'a A Vp(b).

THEOREM 4.4: Assume X is a smooth n-dimensional K-scheme. Let M be an

Ox-module. Then the sequence of sheaves on X,
ws) 0— M 2E D 9o, M TZEM QL 90, Px @0y M
'mQ}®OXPX®OXM—>O7

is exact.

Proof: The proof is similar to that of [Yel, Theorem 4.5]. We may restrict to
an affine open set U = Spec B C X that admits an étale coordinate system s =
($1,.-.,8n), i.e., K[s] — B is an étale ring homomorphism. It will be convenient
to have another copy of B, which we call C; so that I'(U,Px) = ﬂ/®\C, the
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I-adic completion, where I := Ker(B ® C — B). We shall identify B and C
with their images inside B® C, and denote the copy of the element s; in C by r;.
Letting ¢; :=7;, —s; € B®C we then have t; = §; = 1®s; — s; ® 1 in our earlier
notation. Note that QK[S] C Qp is a sub DG algebra, and B ®k|g QK[S] — Qp
is a bijection.

By definition

(4.6) LU,y ®ox Px) =Qp @B (B®C) B®C

The differential Vp on the left goes to the differential dg ® 1¢ on the right.
Consider the sub DG algebra QK[S] ®C C Qp ®C. We know that K — QK[S]
is a quasi-isomorphism; therefore, so is C' — QK[S] ® C.

Since t; +s; = r; € C, we see that C[s] = C[t] C B®C. Therefore, we obtain
C-linear isomorphisms

So there is a commutative diagram
(4.7)
v v "
0—(C—— C[t] —P> Q]I1<[s] ®K[s] C[t] —7; o 'Q]K[s] ®K[s] C[t] —0

[ O

0—C—BoC—50L0C — T . .0LeC — 0

of C-modules. The top row is exact, and the vertical arrow are inclusions.
Let us introduce a new grading on Q%[S] ®k[s) C[t] as follows: deg(s;) := 1,
deg(t;) := 1, deg(d(s;)) := 1 and deg(c) := 0 for every nonzero ¢ € C. Since
Vp(ti) = —d(s;), we see that Vp is homogeneous of degree 0, thus the top row
in (4.7) is an exact sequence in the category GrMod C' of graded C-modules.
Now each term in this sequence is a free graded C-module, and, therefore, this
sequence is split in GrMod C'.

The t-adic inv structure on C[t] can be recovered from the grading, and this
inv structure is the same as the I-adic inv structure on B ® C. Therefore,
the completion is Qi[s] ®k(s) Cl[t] = QE@TC. Thus, the diagram (4.7) is
transformed to the commutative diagram

0— ¢ — O[] ~2 Qi) @i ClE 25 - Uy ®xcie) CllE] — 0

L L L

J—

0—>C—>B®C—>Q1 ®C’—> LR C—0
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in which the top row is continuously C-linearly split and the vertical arrows are
bijections. Hence, the bottom row is split exact. Comparing this to (4.6) we
conclude that the sequence of right Oy-modules

0 — Oy 22 Pxly Y2 (4 ®oy Px)lo ~2» - (2% @0y Px)|y — 0

is split exact.
It follows that for any Ox-module M the sequence (4.5), when restricted to
U, is split exact. |

Let us now fix an affine open covering U = {U(q), ..., Ugm)} of X.

Let Zx = Ker(Px — Ox). This is a defining ideal of the noetherian formal
scheme (%, Ox) := (X, Px). So Px is an inv module over itself with the Zx-adic
inv structure. Given quasi-coherent O x-modules M and N, the tensor product
N ®o0y Px @0y M is a dir-coherent Px-module, and so it has the Zx-adic
dir-inv structure. See Example 1.4. In particular,

Qx Qo Px ®oy M = @p>0 05 ®oy Px oy M

becomes a dir-inv K x-module.

LEMMA 4.8: Qx ®0, Px @0, M is a DG Qx-module in Dir Inv Mod K x, with
differential Vp ® 1.

Proof: Since Vp®1,, is a differential operator of Px-modules, it is continuous
for the Zx-adic dir-inv structure. See [Ye2, Proposition 2.3]. |

Henceforth, we will write Vp instead of Vp ® 1,4.

Definition 4.9: Let M be a quasi-coherent O x-module. For any p, g € N define
MixZ 4 (M) := NIC(U, Q% R0y Px @0y M).
The Grothendieck connection
Vp: Q% ®oy Px @ox M — O3 @0, Px ®o, M

induces a homomorphism of sheaves

Vp: Mixh(M) — MixbH9(M).
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We also have 9: Mix%;?(M) — Mixh;"" (M). Define

Mix, (M) = @erq:i
Mixg; (M) = @l Mixg, (M)

MixF; (M),

and
(410)  dmix := 0+ (=1)7Vp: MixBy?(M) — Mix 7 @ Mixk; T (M).

The complex (Mixg (M), dmix) is called the mixed resolution of M.

There are functorial embeddings of sheaves
(411) M C Px @0y M C NC(U, Q% @0y Px @0y M) = Mixg’ (M)
and

(412)  MixBIM) C [ [ 9i-95 1 (QUAR)E(Q, ®ox Px ®ox M));
lENGEAT

see Lemma 3.1.

PROPOSITION 4.13:
(1) Mixg;(Ox) is a sheaf of super-commutative associative unital DG K-
algebras. There are two K-algebra homomorphisms

pi,p3: Ox — Mixgy (Ox).

(2) Let M be a quasi-coherent Ox-module. Then Mixy; (M) is a left DG
Mixy; (Ox )-module.
(3) If M is a locally free Ox-module of finite rank then the multiplication
map
Mixy; (Ox) ®0, M — Mixg (M)

is an isomorphism.

Proof: By Lemmas 3.1 and 3.7. |
Note that dmix © p5: Ox — Mixy (Ox) is zero, but dpix o p # 0.

PROPOSITION 4.14: Let My, ..., M, N be quasi-coherent Ox-modules. Sup-
pose

@ H(QX ®ox Px ®oyx Mi) = Qx ®oy Px Qo N

i=1
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is a continuous §x-multilinear sheaf morphism of degree d. Then there is a
unique K-multilinear sheaf morphism of degree d

NC(U, ¢): Mixgy(My) x -+ x Mixy (M,.) — Mixgy (N),
which is compatible with ¢ via the embedding (4.12).

Proof: This is an immediate consequence of Lemma 3.7. |

Suppose we are given M € CT(QCoh Ox). Define

Mixg (M) = @ Mix{; (MP)

pt+q=1

with differential
dmix + (—1)%d g Mix§; (MP) — MiX?jrl(/\/lp) &3] MiX?](Mp'H).

THEOREM 4.15: Let X be a smooth separated K-scheme, and let U =
{Uwy; -+, Uiy} be an affine open covering of X.
(1) There is a functorial quasi-isomorphism M — Mixy (M) for M €
CT(QCoh Oy).
(2) Given M € C*(QCoh Ox), the canonical morphism

I['(X, Mixg; (M)) — RI(X, Mixg (M)

in D(ModK) is an isomorphism.
(3) The quasi-isomorphism in part(1) induces a functorial isomorphism
(X, Mixy (M)) = RI(X, M) in D(Mod K).

Proof: (1) Write N := Qx ®oy Px ®o, M. A filtration argument and
Theorem 4.4 show that the inclusion M — N is a quasi-isomorphism. Next we
view A as a bounded below complex in DirInvMod Kx. By Theorem 3.8(2) we
have a quasi-isomorphism A — NIC(U, N') = Mixg (M).

(2) This is due to Corollary 3.10(1), applied to the formal scheme (X, Px) and
the complex N of dir-coherent Px-modules defined above.

(3) The assertion is an immediate consequence of parts (1) and (2). |

COROLLARY 4.16: In the situation of the theorem, suppose M and N are in
CT(QCoh Ox) and ¢: Mixg; (M) — Mixg; (N) is a K-linear quasi-isomorphism.
Then

I'(X, ¢): I'(X, Mixy (M) — T'(X, Mixgy (N))
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is a quasi-isomorphism.

Proof: Consider the commutative diagram

(X, Mixg, (M) — L DX, Mixg, (N))

l RI'(X,¢) l

RI(X, Mixg; (M)) ——— RI'(X, Mixg, (N)),

in D(ModK). By part (2) of Theorem 4.15 the vertical arrows are isomorphisms.
Since ¢ is an isomorphism in D(ModK ), it follows that the bottom arrow is
an isomorphism. |

Given a quasi-coherent Ox-module M and an integer ¢ define
G Mixy (M) := @qu Mix{; (M).

Then {G?Mixy (M)}iez is a descending filtration of Mixy (M) by subcom-
plexes, satisfying G* Mix; (M) = Mixy; (M) for i < 0 and (), G* Mixy (M) = 0.
For any ¢ define

gri; Mixg; (M) := G Mixg; (M) /G Mixg, (M),
The functor
griG Mixg; : QCohOx — ModKx

is additive, but we do not know whether it is exact. The next theorem asserts
this in a very special case.

Consider the sheaves of DG Lie algebras 7, v and D
quasi-coherent O x-modules (cf., [Ye3, Proposition 3.18]). According to [Yel,

y as complexes of

Theorem 0.4] there is a quasi-isomorphism

L{1:T

poly, X — D

poly, X

THEOREM 4.17: For any i the homomorphism of complexes

griG Mixy, (U): gric; MiXU('J;oly,X) - griG Mixy, (Dpoly,x)

is a quasi-isomorphism.

Proof: Given a point x € X choose an affine open neighborhood V of =z
which admits anétale morphism V' — AR. By [Ye2, Theorem 4.11], the map of
complexes

Uily: 7;01y,X|V - Dpoly,X|V
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is a homotopy equivalence in CT(QCohOy). Since gry Mixy, is an additive
functor we see that gri, Mixg, (Us)|v is a quasi-isomorphism. |

Remark 4.18: We know very little about the structure of the sheaves,
NYC(U, M), even when M = Ox. Cf. [HS].

5. Simplicial Sections

Let X be a K-scheme, and let X = U;lo Uy be an open covering, with in-
clusions g(;): Uy — X. We denote this covering by U. For any multi-index
i = (io,...,iq) € A" we write U; := ﬂ?:o Ui,), and we define the scheme
Uy = HieA;n Ui. Given @ € A and i € A" there is an inclusion of open
sets a,: Ui — U, (4)- These patch to a morphism of schemes a.: U, — Up,
making {U, },en into a simplicial scheme. The inclusions g(;): Uy — X induce
inclusions g;: U; — X and morphisms gq4: U; — X; and one has the relations

gp © s = g, for any a € AJ.

Definition 5.1: Let m: Z — X be a morphism of K-schemes. A simplicial
section of 7 based on the covering U is a sequence of morphisms

o ={os AL x Uy — Z}en,

satisfying the following conditions.
(i) For any ¢ the diagram

Al x U, S

le Wl
9q

Uq —= X

is commutative.

(ii) For any a € A the diagram

AL x U,

AL x U, Z
m %

Al x U,

is commutative.
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Given a multi-index ¢ € AJ" we denote by o; the restriction of o4 to Al xU;.
See Figure 1 for an illustration.
As explained in the introduction, simplicial sections arise naturally in several

contexts, including deformation quantization.

o
a

NS

A]% X U(O,l)

O 7(0,1)

m a(1) m

Figure 1. An illustration of a simplicial section o based on an open
covering U = {U(;}. On the left we see two components of o
in dimension ¢ = 0; and on the right we see one component in

dimension ¢ = 1.

Let A be an associative unital super-commutative DG K-algebra. Consider
homogeneous A-multilinear functions ¢: My X - - - x M, — N, where M, ..., M,
and N are DG A-modules. There is an operation of composition for such func-
tions: given functions ;: ] j L; ; — M; the composition is

(7250(1/)1 X oo X’Z/JT)Z HL’L’] *)N
,J

There is also a summation operation: if ¢;: [[, M; — N are homogeneous of
equal degree then so is their sum Zj ¢;. Finally, let d: [[, M; — [, M; be the
function

d(mq,...,m;) = Zi(ml, vy d(my), .o my)
i=1
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with Koszul signs. All the above can, of course, be sheafified, i.e., A is a sheaf
of DG algebras on a scheme Z etc.

As before, let m: Z — X be a morphism if K-schemes, and let U = {U;}
be an open covering of X. Suppose o is a simplicial section of 7 based on U.
We consider Q% as a discrete inv K x-module, and Qx = P>, Q% has the P
dir-inv structure. Likewise for Q7 = @, -, Q5.

Suppose M is a quasi-coherent Ox-module. Then, as explained in Section 4,
Qz®ozﬁ; (Px ®o, M) is a DG Qz-module on Z, with the Grothendieck con-
nection Vp. And Mixg; (M) is a DG Mixg; (Ox )-module on X, with differential
Amix-

THEOREM 5.2: Let m: Z — X be a morphism of schemes, and suppose o is a

simplicial section of m based on an open covering U of X. Let My,..., M N
be quasi-coherent O x-modules, and let

¢: [[(2280,7 (Px ®ox Mi)) = Q80,7 (Px @0y N)

i=1
be a continuous ) z-multilinear sheaf morphism on Z of degree k. Then there
is an induced Mixy; (Ox)-multilinear sheaf morphism of degree k

o*(¢): Mixg (My) x -+ x Mixgy (M,) — Mixg (N),

on X with the following properties:
(i) The assignment ¢ — o*($) respects the operations of composition and
summation.
(ii) If ¢ = 7*(¢o) for some continuous Qx-multilinear morphism

®o: H(QX Royx Px ®ox M) = Qx Qo Px Qo N,
i=1
then o*(¢) = NC(U, o).
(iii) Assume that
Vpod—(=1)F¢oVp =1

for some continuous () z-multilinear sheaf morphism

¥ [[(2280,7 (Px @0x Mi)) = Q80,7 (Px ®oy N)

i=1

of degree k + 1. Then,

dmix 0 0 (¢) — (=1)*6*(¢) 0 dmix = o* ().
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Before the proof we need an auxiliary result.

LEMMA 5.3: Let A and B be complete DG algebras in DirInv Mod K, and let
f*+ A — B be a continuous DG algebra homomorphism. To any DG A-module
M in Dirlnv Mod K we assign the DG B-module f*M := B&4M. Then to any
continuous A-multilinear function ¢: [[, M; — N we can assign a continuous B-
multilinear function f*(¢): [, f*(M;) — f*(IN). This assignment is functorial
in f*, and respects the operations of composition and summation. If ¢ and
1 are such continuous A-multilinear functions, homogeneous of degrees k and
k + 1, respectively, and satisfying

dog—(~1)*¢od =1,

then
do f*(¢) = (=1)*f*(¢) od = f*(4).

Proof: This is all straightforward, except perhaps the last assertion. For that,
we make the calculations. By continuity and multilinearity it suffices to show
that

(do f*(@)(B) — (=1*(f*(9) 0 A)(B) = f*(¥)(B),
for 8= (f1,...,0r), with 8; = b; ® m;, b; € BPi and m; € M%. Then

= +d(by--by) - $lma,...,me) £ by by - d(@(ma, ..., my))

with Koszul signs. Since
d(B;) = d(bi) ® m; £ b; @ d(my),
we also have

(f*(¢) o d)(B) =Zif*<¢><ﬁl, L d(Bi), - B

:Z(ibl coed(by) - by - d(ma, ... my)

iblb,¢(m1,,d(ml)m,))
::l:d(blbr)d)(mla7mr):tb1br¢(d(mlaamr))

Finally
f*(¢)(5) = :l:bl o 'bT ' 7/1(7’”1, .- 'amT)a

and the signs all match up. |
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Proof of the theorem: For a sequence of indices © = (ig,...,%) € A" let us
introduce the abbreviation Y; := A]ZK xU;, and let pa: Y; — U; be the projection.
The simplicial section o restricts to a morphism o;: Y; — Z.

By Lemma 5.3, applied with respect to the DG algebra homomorphism
oo Ny — (ly,, there is an induced continuous 2y;-multilinear morphism

0; (6): [1(2.8, 10,0 (@280, (Px Doy M,)))

j=1
- QEQ%U;IQZU;I(QZ@OZW;(PX Rox N))

Now for any quasi-coherent O x-module M we have an isomorphism of dir-inv
DG Qy.-modules

QY@U;lﬂzggl(QZ@oﬁ(m ®ox M)) 2 Q. 80, p3(Px ®ox M).

Under the DG algebra isomorphism pa.(2y, = Q(AL) ® Qu, there is a dir-inv
DG module isomorphism

P2+ (Qy, Doy, P (Px ®ox M)) = QAL (Qx ®ox Px ®ox M)|u, .

Thus we obtain a family of morphisms

1) TT (2AAE©x @0y Px Sox M))lu: )

j=1

— QAL)B(2x ®oy Px ®ox N)|v,),

g,

indexed by ¢ and satisfying the simplicial relations. Now use Lemma 3.6 to
obtain o*(¢). Properties (i-iii) follow from Lemma 5.3. |
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